44 research outputs found

    Review of Artifact Rejection Methods for Electroencephalographic Systems

    Get PDF
    Technologies using electroencephalographic (EEG) signals have been penetrated into public by the development of EEG systems. During EEG system operation, recordings ought to be obtained under no restriction of movement for routine use in the real world. However, the lack of consideration of situational behavior constraints will cause technical/biological artifacts that often mixed with EEG signals and make the signal processing difficult in all respects by ingeniously disguising themselves as EEG components. EEG systems integrating gold standard or specialized device in their processing strategies would appear as daily tools in the future if they are unperturbed to such obstructions. In this chapter, we describe algorithms for artifact rejection in multi-/single-channel. In particular, some existing single-channel artifact rejection methods that will exhibit beneficial information to improve their performance in online EEG systems were summarized by focusing on the advantages and disadvantages of algorithms

    SSL for Auditory ERP-Based BCI

    Get PDF
    A brain–computer interface (BCI) is a communication tool that analyzes neural activity and relays the translated commands to carry out actions. In recent years, semi-supervised learning (SSL) has attracted attention for visual event-related potential (ERP)-based BCIs and motor-imagery BCIs as an effective technique that can adapt to the variations in patterns among subjects and trials. The applications of the SSL techniques are expected to improve the performance of auditory ERP-based BCIs as well. However, there is no conclusive evidence supporting the positive effect of SSL techniques on auditory ERP-based BCIs. If the positive effect could be verified, it will be helpful for the BCI community. In this study, we assessed the effects of SSL techniques on two public auditory BCI datasets—AMUSE and PASS2D—using the following machine learning algorithms: step-wise linear discriminant analysis, shrinkage linear discriminant analysis, spatial temporal discriminant analysis, and least-squares support vector machine. These backbone classifiers were firstly trained by labeled data and incrementally updated by unlabeled data in every trial of testing data based on SSL approach. Although a few data of the datasets were negatively affected, most data were apparently improved by SSL in all cases. The overall accuracy was logarithmically increased with every additional unlabeled data. This study supports the positive effect of SSL techniques and encourages future researchers to apply them to auditory ERP-based BCIs

    EEG Signal Processing for Real Applications

    No full text

    Portable Drowsiness Detection through Use of a Prefrontal Single-Channel Electroencephalogram

    No full text
    Drowsiness detection has been studied in the context of evaluating products, assessing driver alertness, and managing office environments. Drowsiness level can be readily detected through measurement of human brain activity. The electroencephalogram (EEG), a device whose application relies on adhering electrodes to the scalp, is the primary method used to monitor brain activity. The many electrodes and wires required to perform an EEG place considerable constraints on the movement of users, and the cost of the device limits its availability. For these reasons, conventional EEG devices are not used in practical studies and businesses. Many potential practical applications could benefit from the development of a wire-free, low-priced device; however, it remains to be elucidated whether portable EEG devices can be used to estimate human drowsiness levels and applied within practical research settings and businesses. In this study, we outline the development of a drowsiness detection system that makes use of a low-priced, prefrontal single-channel EEG device and evaluate its performance in an offline analysis and a practical experiment. Firstly, for the development of the system, we compared three feature extraction methods: power spectral density (PSD), autoregressive (AR) modeling, and multiscale entropy (MSE) for detecting characteristics of an EEG. In order to efficiently select a meaningful PSD, we utilized step-wise linear discriminant analysis (SWLDA). Time-averaging and robust-scaling were used to fit the data for pattern recognition. Pattern recognition was performed by a support vector machine (SVM) with a radial basis function (RBF) kernel. The optimal hyperparameters for the SVM were selected by the grind search method so as to increase drowsiness detection accuracy. To evaluate the performance of the detections, we calculated classification accuracy using the SVM through 10-fold cross-validation. Our model achieved a classification accuracy of 72.7% using the PSD with SWLDA and the SVM. Secondly, we conducted a practical study using the system and evaluated its performance in a practical situation. There was a significant difference (* p < 0.05) between the drowsiness-evoked task and concentration-needed task. Our results demonstrate the efficacy of our low-priced portable drowsiness detection system in quantifying drowsy states. We anticipate that our system will be useful to practical studies with aims as diverse as measurement of classroom mental engagement, evaluation of movies, and office environment evaluation

    Feature Generation by Simple FLD

    No full text
    This paper presents a new algorithm for feature generation, which is approximately derived based on geometrical interpretation of the Fisher linear discriminant analysis. In a field of pattern recognition or signal processing, the principal component analysis (PCA) is often used for data compression and feature extraction. Furthermore, iterative learning algorithms for obtaining eigenvectors have been presented in pattern recognition and image analysis. Their effectiveness has been demonstrated on computational time and pattern recognition accuracy in many applications. However, recently the Fisher linear discriminant (FLD) analysis has been used in such a field, especially face image analysis. The drawback of FLD is a long computational time in compression of large-sized between-class and within-class covariance matrices. Usually FLD has to carry out minimization of a within-class variance. However in this case the inverse matrix of the within-class covariance matrix cannot be obtained, since data dimension is higher than the number of data and then it includes many zero eigenvalues. In order to overcome this difficulty, a new iterative feature generation method, a simple FLD is introduced and its effectiveness is demonstrated
    corecore